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Introduction 

The problem of vibrations of a tank con- 
taining one or  more fluids under pressure is of 
fundamental interest in a variety of problems of 
present daytechnology. A prime example of this 
i s  the design of large fuel tanks for liquid pro- 
pellant rockets, where the requirement of a light 
weight structure and the large percentage of the 
total mass contributed by the propellant., call for 
a s  accurate an analysis a s  possible of the dynamic 
interaction between fluid and elastic container. 

The breathing vibrations of a pressurized 
cylindrical shell containing a heavy liquid have 
been investigated by Berry and Reissnerl using 
shallow shell theory. 
an experimental investi ation of partially filled 

shell partially 5lled with an incompressible fluid 
using Donnellb4 equations as extended by Yu5 
to the dynamic case and, following Reissner6, 
he neglected the axial and circumferential inertial 
terms. 

Lindholm et a12 carried on 

cylindrical tanks. Chu 4 analyzed a cylindrical 

In the present paper the differential 
equations of motion are f i r a t  established, within 
the scope of the linear small displacement theory, 
for an  axisymetric pressurized shell filled with 
one o r  more non-mixable, non-viscous, com- 
pressible fluids. Thereafter, the specific case is 
considered of a closed simply supported circular 
cylindrical shell, 
single fluid and b) containing two non-mixable 
fluids. 

a )  completely filled with a 

The present investigation was carried out 
under NASA Contract No. NAS 8-11015. 

Equations of Motion 

a) Shell 

Within the scope of the linear elastic theory 
the differential equations of motion of a thin shell 
can be written7.8 

where: 

U. is the displacement component in the 
j-direction, 

is the component of the external force 
in the i-direction, 

is the inertial mass per unit a rea  of 
the shell. 

Pi  

ms 

O f S  PRICE 

XEROX 

Theodore Liber 
Associate Research Engineer 
IIT Research Institute 
Chicago, Illinois 

L are  linear differential operator. in 
the shell coordinates aasociated with 
the shell geometry, 

ij 

t is time, 

6..  
I’ 

(Kronecker’s delta) has the value 1 
for i = j and zero otherwise. 

?he natural modes a r e  obtained a s  the 
solution of the set of 3 homogeneous differential 
equations 

f[LiJqjms4]”jk= .I 0 

obtained by substituting 

into equation (1). 

geneous system ( 2 )  and associated boundary con- 
ditions, characterize the mode shape a8~ocia tcd  
with the frequency %. 

non-trivial solutions leads to the frequency 
equation associated with the problem. 

b) Fluid 

The functions U.p satisfying the homo- 

The requirement that equations (2) have 

The small motion of a compressible non- 
viscous fluid a re  govetned by the equation9 

[ &&- v+] p = 0 

where: 

q =p-po is the pressure fluc a 
the mean value p 

0 ’  

3n about 

C is the velocity of sound in the 
0 fluid at  the pressure po , 

oz is the Laplacian operator, 

The acceleration of a fluid particle in the xi- 
direction is given by 

where p 
cornpone$ of velocity in the x.-direction. 

is the density of the fluid and ui is the 
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C )  Interaction Between Fluid and Shell 

The interaction between the fluid and the 
shell is obtained by equating the normal acceler- 
ations and pressures of fluid and shell at the shell 
surface. Thus 

a' aa l a p  &=-fut,=--- a+ cb an 

P: = P:, (7) 

at the shell surface. The indicies B and f refer 
to shell and fluid, and n denotes the normal dir-  
ection. 

If there a r e  two non-mixable fluids inside 
the shell then, under the assumption that the dyna- 
mic overpressure an well as  the pressure due to  
gravity a r e  small as  compared with the static 
pressure p , the following condition must be sat- 
isfied a t  theOinterface 

which by equation ( 5 )  implies 

where n1 is the direction normal to the inter- 
face. 

The Completely Filled Cylindrical Tank 

For a cylindrical shell the differential 
equations (1) can be written as7# 8 

where: 

u. v, w, a re  the displacement components 
in the x, 0, and r directions 
(see Figure 1). 

a, h, m8, a re  the radius. wall thickness. 
and mass per unit area of shell, 

v . D  =Eh/(l-v 2 ), are  Poisson's ratio, and 
membrane stiffness respectively, 

is the static pressure, and q the 
dynamic overpressure acting on the 
shell. 

PO 

For the simply supported shell the solntioplr 
of the associated homogeneous equations a r e  of 
the form 

where 1 is the length of the cylindrical shell, and 
U V and W are  constant coefficients. 
Tenkui$gquation a n i n  cylindrical coordinates 
has a solution of the form 

where the J is the Bessel function of the first  
kind and orde? n , and 

Fig. I Coordinate System 

? 
L. 



with with 

Substituting (11) and (12) into ( 6 )  and ( 7 )  we 
obtain 

The solution of the problem requires that 
equations (16) and (18) be simultaneously s a t i n -  
fied. 

mnr 
Q,,,~= 4-0 p.B(A) W,,sin L c o s n 6  rino,t 

BtA) = B,* ~5 

(I 5) 

(I6) 

lhe  Partially Filled Cyliqdrical Tank 

J"(A1 Let the index i = 1, 2 indicate the bottom 
and top parts of the cvlindrical shell as  shown in 
Figure 1. The differential equations (1) can then 
be written as 

where the prime indicates differentiation with 

where: For the simply supported shell the solution8 
of the associated homogeneous equations can be 
assumed in the form of 

I*$ ,, =p.Y r n i  % 

al:TB I-? I* n % 5 

a IS = I * g ( 2 n + p 1 ) + m ( n  +P j 

a,,: a,,: T B n 

a,,= a,,= - VP 

a,: a,; n 

u: U,rarq+rosne r i n w t  

c , a =  v, = V, sine*sin ne sinot 

y = w,sint$cosne Ainot  

u,= u,cos&j&sne sinot 
The requirement that (17) has a non-trivial solu- 
tion leads to  the characteristic equation va = Vasin 4~ 1-x sin ne sinot 

l - X  
u,= W,sinB=Tcosne sinot 

1 subject to the conditions that at x = 1 

For the axisymetric case (n = 0) equation (18) 
reduces to 

1 La 
B,COtP,$+ e a c o t e l ~  = o  

As before we assume solutions of the fluid equa- 
tion (4) of the form (l") 



The solution of the problem requires that 
equations (23), (28)  and (29) be simultaneously 
satisfied. 

9,' Q, J,(A,%) sin@,+ c o m e  s i n w t  (244 
Numerical Examples 

I) Full Tank 
('L4b) 

\=Q,J,(X,$) s inp%Tcosne c-x s i n o t  

where: For the axisymetric case we write equation 
(18') in the form 

where c1 and cz  a re  the velocities of sound of 
the respective flulds. 
(9) for all values of r requires that 

The satisfaction of equation 
with 

Substituting (21) and (24) into (6) and (7) we obtain 

let  
Q,= wta BiA) W, s i n e 5  c o m e  sinwt (274  

Substitution of equation (27) into (20)  leads 
finally to the pair of characteristic equations 

a )  To determine the first  natural frequen- 
cy WP s tar t  withn = 0 and compute A and B 
from equations (337 and (32). We then sgbstituteo 
these values into the right hand side of equation 
(31a) to  compute R . We repeat these cycles 
until there is no further change. For the numer- 
ical values given, we obtain after three iteration kl*kB)na- a,l[nz-cnl+e,"l[n.-~cn''~il 

(29) 
cycles 

R =  0.1230 where: 

b) To determine the second natural fre- 
ai = 1 + 2 4 ( 2 n ~ : ) +  ci(nl*(t'P quency we s tar t  with n = B and proceed as 

before using equation ( A b )  instead of (31a). 
two iterations we obtain 

After 

and X, F a re  defined in equation (19). 

In the axisymetric case (n  = 0) equations 
(29) and (30) reduced to  

fi = 0.61843 

Figure 2 shows the graphical solution for 
(293 this case. 



n) Partially Filled Tank 

Let 

Figure 3 shows the curves Ba correspond- 
ing to  solutions of equations (29') and the curves 
B representing equation (28). The intersections 
o h o t h  se t s  of curves a re  the solutions of the 
system (29') and (28). In the same figure the 
ratios 

a re  also plotted a s  functions of S2. 
procedure similar.to the one outlined above 
yielded for the first intersection 

An iteration 

Q = 1.005 j A =  3.1'163 e = 1.004 j Ps= 13.012 

Figure 4 shows the solution of the continuity 
equation (23) for the above given values of P i ,  f32 
and l/a. The pairs of values 11, 1 so obtained 
determine .the different liquid levels$or which the 
system will vibrate at the frequency 

Conclusions 

The empty tank has three ( two for n I 0) 
natural frequencies associated with a given mode 
shape. whereas, for the completely filled tank 
there can be any number of such natural frequen; 
cies. Moreover, the lowest natural frequency is 
always lower and the highest is at most equal to 
the corresponding natural frequencies of the empty 
tank. 

When two fluids a r e  present in the shell we 
have that, for the axisymetric case, the frequen- 
cies a re  grouped into a low and a high range. 
low range frequencies a r e  lower than the lowest 
and the high range frequencies higher than the 
highest natural frequencies of the corresponding 
empty shell. 

The 

The case of n other than zero has not been 
investigated thoroughly but it is believed that 
similar conclusions can be drawn. 

Fur a given circumferential mode shape 
there a r e  in general several levels of the separa- 
tion surface associated with the same natural 
frequency. However, if the liquid level is also 
prescribed there may not exist a corresponding 
natural frequency. 

This property of the solution deserves fur- 
ther investigation, for it may very well imply, 
that when the liquid level changes, instability 
conditions which may induce sloshing a re  set up. 
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F I G 2  FULL TANK - SOLUTiON FOR 
THE AXISYMMETRIC CASE 
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